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Abstract. Plans and goals recognition algorithms provide hypotheses
about an agent’s motivations from an observed behavior. As these tech-
niques are useful to detect maleficent agents, they might also be used
to threaten privacy and jeopardize their strategy. But having in mind
the existence of an observer, an agent may willingly modify her behav-
ior to clarify her intentions or a contrario to obfuscate her underlying
goals. This research agenda paper explores the problem of goals infer-
ence, transparency and obfuscation through a framework based on the
introduction of this dimension in the agent’s decision making process into
the classic BDI architecture. Then, we highlight the need of explainabil-
ity to make the resulting behavior as understandable as possible to a set
of trusted artificial agents or human users and raise several questions. A
proof of concept illustrates the implementation of this model in a simple
scenario.

Introduction

Observing the behavior of the agents through a shared environment in a multi-
agent system is often mentioned as a necessity to identify threats, misconducts
or any improper goal and eventually react in an appropriate way. This task is
considered as a fundamental problem in AI with many practical applications as
computer network security [5], software user assistance [8] or dangerous people
detection in a crowd [16]. Plan recognition algorithms have been proposed to
get this information and provide a set of explanations for an observed behavior.
Being able to verify the coherency of a behavior according with a set of accept-
able intendable goals is considered as a plus for the supervision of such systems.
In such context, agents may be interested in optimizing the conspicuity of their
goals to be not considered as a threat. But in many application domains, espe-
cially where privacy and safety of the users is involved, being able to identify
the goals of the others might be considered as intrusive and maleficent.

Being conscious that their behavior may reveal their goals to an observer,
agents may need to control the given information through their observable be-
havior. Our proposition lies in a mechanism designed to provide an evaluation
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of the quantity of given information and to integrate this consideration in the
decision making process of an agent. To that end, the agent perceives her own
behavior through the environment and anticipate the impact of a decision on the
given information to an observer. This knowledge is used as an element of the
context in the decision making process of an agent to obfuscate her goals (i.e.
minimize the given information) or, at the opposite, increase the transparency
(i.e. maximize the given information). However, obfuscation might be considered
as a drawback when agents are looking for others to coordinate with, and cre-
ate a trust-based group to cooperate. We highlight here the need to let agents
explain their plans to the trusted collaborators. This ability seems also relevant
to keep the agent’s intentions as clear as possible towards a human user.

Section 1 introduces the problem of goal inference and sequential plan recog-
nition as a set of concepts and techniques used to identify the most probable
goal of an agent, based on a set of observations. Section 2 presents our model of
obfuscation and transparency-based decision making and illustrates the model
with a proof of concept implemented with the JaCaMo Framework to show how
it might be implemented, and evaluates the efficiency of this model. And Section
3 extends the framework to a trust-based cooperation mechanism and discusses
about the need of explainability towards trusted agents.

1 Background

This section provides an overview of the Plan Recognition branch of Artificial
Intelligence, and the way to model and analyze an observed behavior in order
to infer the most probable goal of an agent[10]. An example illustrates these
concepts with a simple scenario used all along this article in order to instantiate
the provided definitions and to illustrate the mechanisms.

To identify the goals and plans used by an agent with an observation and
interpretation of its behavior, the Plan Recognition (PR) methodology proposes
a way to select the most likely goal according with a shared plan library [9,13].
This approach consists in evaluating the likelihood of each plan to identify the
most probable goal (MPG) intended by the acting agent. The observer compares
the behavior (i.e. an ordered set of actions) of an observed agent with a plan
library. A plan library is defined by Kabanaza et al. as a tuple L = 〈A,G, I,R〉
with A a set of actions, G a set of goals, I ⊆ G a set of intendable goals and
R a set of goal-decompostion rules defined as g → τ meaning that the goal g
can be accomplished by achieving each element of the partially ordered string τ
over the alphabet (A ∪G) represented as a pair [β,C]. β ∈ (A ∪G)∗ represents
a string of goal and action symbols and C is a set of ordering constraints. A
constraint (i, j) means that the ith symbol of β must be achieved or executed
before the jth symbol of β.

This definition is only a conceptual view of the observer and is used to eval-
uate the similarity between an observed behavior and a set of plans, even if the
observed agent is not really using this sort of plans (for instance, if the observed
agent is a human being) or if the actions are not entirely observable (e.g. if they
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are internal actions or if agents only have a local perception). We denote A the
set of the agents and ba a sequence of actions executed by an agent a ∈ A (called
behavior of a).

A common way to illustrate a plan library is to build a plan forest where
plans are displayed as AND-OR trees, where leafs are actions, internal nodes
are goals, AND-nodes have an arc across the lines to their children while OR-
nodes don’t, and constraints are represented with arrows from the first element
of a constraint to the second one. An example is graphically displayed page 3 to
illustrate a simple plan library.

An explanation of an observed behavior ba is defined [5] as a minimal forest of
plan trees with pending sets recorded for each AND-node and OR-node sufficient
to allow the assignment of each observation to a specific action in the plans.

Considering these concepts, a Plan recognition problem PR [13] is defined by
a tuple 〈L, b〉. A PR solving algorithm takes the plan library L and an observed
sequence of actions b, and returns a set of explanations consistent with the
observations. Many efficient algorithms have been proposed in the literature to
solve PR problems, such as ELEXIR[4], PHATT[5], YAPPR[6], DOPLAR[9] and
SLIM[12].

Example 1. Let us consider a simple example, where agents are workers in the
second floor of an office building. They are able to use their perception function
to perceive the behavior of the other agents on the same floor and they share a
plan library L. We consider in this example three different intendable goals able
to motivate an agent to go out of her office on the second floor to have a snack
break, a coffee break or improve the state-of-the-art of their next paper with a
book. The shared plan library describes the knowledge on the different ways to
achieve these goals.

The shared plan library L contains the following elements :

A , the set of actions, is defined as A = { Go to ground floor, Go to second
floor, Go to third floor, Buy a coffee, Drink a coffee, Buy a snack, Eat a
snack, Take a book, Read the book };

G , the set of goals, is defined as G = { Have a coffee break, Find a coffee
machine, Enjoy coffee anywhere, Have a snack, Find a vending machine,
Enjoy snack anywhere, Improve the state-of-the-art, Read anywhere };

I ⊆ G, the set of intendable goals, is defined as I = { Have a coffee break,
Have a snack, Improve the state-of-the-art };

R , the set of goal-decomposition rules. The set used in this example is too big
to be detailed here, but contains such rules as

Have a coffee break← [Find a coffee machine,
Buy a coffee,
Enjoy coffee anywhere,
{(1, 2), (2, 3)}]

meaning that the goal “Have a coffee break” can be accomplished by achiev-
ing or executing the elements of the set β = {Find a coffee machine, Buy a coffee,
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Enjoy coffee anywhere}, in any order consistent with the set of constraints
C = {(1, 2), (2, 3)}. This plan library also include alternatives such as the
following pair of goal-decomposition rules :

Find a coffee machine← [Go to ground floor,∅]
Find a coffee machine← [Go to third floor,∅]

meaning that the goal “Find a coffee machine” can be accomplished by
achieving one of the two actions mentioned here.

Figure 1 illustrates the plan library mentioned in this example as a forest of
three plan trees. The first plan tree describes for instance how to have a coffee
break by going to a coffee machine on the ground floor or third floor, then buying
it, and finally drinking it before or after coming back to the office on the second
floor.

Have
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ground
floor

Go to
third
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Buy a
coffee

Enjoy
coffee

anywhere

Go to
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floor
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Fig. 1: Example of a plan library : plans to have a coffee break, a snack or improve
the state-of-the-art

Let us now consider an agent staying on the second floor and observing the
behavior of the others. We consider a first observed behavior bagi executed by
an agent agi ∈ A such as bagi

= { Go to ground floor, Go to second floor } and
a second observed behavior bagj

executed by an other agent agj ∈ A such as
bagj

= { Go to third floor, Go to second floor, Read the book }.
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According with the plan library, two of the three plan trees may produce a
behavior including the actions of bagi

as they both contain these leaves and this
order is permitted by the constraints. However, in the case of bagj , the plan tree
with the root goal “Improve the state-of-the-art” is the only one able to produce
this behavior as the action “Read the book” ∈ bagj

is absent of the other plan
trees.

2 Obfuscation and transparency in BDI

We introduced in Section 1 the PR problem and provided a simple example to
illustrate the Plan-Library approaches, a set of classic plan recognition method-
ologies in artificial intelligence to identify the possible plans and intended goals
of an agent according to an observed behavior.

As an observer agent may use these techniques to analyze a behavior, an ob-
served agent may take in consideration the information provided to the observer
through the observations in order to obfuscate [3] her goals or at the opposite,
make it as transparent as possible.

Obfuscation is neither considered here as obscurantism or deception. Agents
may both do obfuscation and be able to explain their decisions to a user or a
trusted agent. It is a manner to have more control and select who you want (or
should) share information with. Obfuscation must also be distinguished from
deception as it does not broadcast fake information or leads to delude observers,
but cares about (and minimizes) the information given to unwanted observers.

The following section introduces and illustrates a mechanism to introduce
the concept of obfuscation and transparency in the decision making process of
a BDI autonomous agent.

The previous section presented the problem of acting in a system were agents
are simultaneously acting and observing the others. This section provides the
formal definition of a set of predicates to introduce plan recognition and obfus-
cation in the BDI framework. Section 2.1 proposes a mechanism design to infer
the most probable plan from an observed behavior. Section 2.2 shows how agent
may use this knowledge in their decision making process to obfuscate as much
as possible their goals.

2.1 Interpreting an observed behavior

We consider an autonomous agent perceiving the environment (totally or par-
tially) through a perception function and observing several actions executed by
an agent agi. We denote bagi

the set of these observed actions.
In order to infer the most probable plan associated with this observed behav-

ior, we introduce the set Ebagi
of the explanations of the behavior bagi

according
with the shared plan library L and produced by an explanation function EF
such as

EF : I × bagi → Ebagi
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And ej ∈ Ebagi
is set of pairs of an observed action aagi,t associated with an

intendable goal g ∈ I. An intuitive, but inefficient approach to evaluate the set
of the possible explanations require to explore the space of all the possible com-
binations of pairs. The size of this space is O(|I||bagi

|), that makes any simple
implementation suffers from a combinatorial explosion. Many efficient algorithm
are building incrementally the explanation set and updating it during the ob-
servation [1], and tends to eliminate the most unlikely hypothesis at each step
[9].

However, any combination of an actions a ∈ A and intendable goal ig ∈ I
cannot be considered as part of an explanation if it violates at least one of the
following constraints :

– The observed action is a leaf of ig’s plan tree;
– There is no action a′ previously observed associated to ig with an ordering

constraint such as a must be executed before a′.
– There is no action a′ previously observed associated to ig supposed to be in

an alternative subtree. In other words, there is no a′ already associated to
ig such as a and a′ are in two different subtrees of an OR-node.

Example 2. Let us illustrate this with the example presented in Section 1, and
imagine an agent staying in front of the elevator of the second floor to observe
some actions of the others and for instance tries to find several explanations to
the observed behavior bagi

= { Go to third floor, Go to second floor }.
As an example, {〈 Go to third floor, Have a coffee break 〉, 〈 Go to second

floor, Have a coffee break 〉 } ∈ Ebagi
is a valid explanations as all the actions of

the observed behavior bagi
are also in the plan tree of the intendable goal “Have

a coffee break” and the constraints are respected.
Another valid explanation may be {〈 Go to third floor, Have a coffee break 〉,

〈 Go to second floor, Improve the state-of-the-art 〉 } ∈ Ebagi
as the constraints

are respected. As an agent may have several goals to achieve, her behavior may
be explained with a combination of plan trees.

We define the Most Probable Goal (or MPG) as the intendable goal which is
the root node the most associated with actions in the set Ebagi

of all the possible
explanations for the behavior bagi

. As a naive measure of the likelihood of this
plan, we may consider the proportion of action-goal pairs containing the MPG
in Ebagi

.
Finally, an onlooker agent is defined as an agent that infers and updates,

for each action executed by an agent agi and perceived through her perception
function, such belief as isTheMPGof(ig , agi ). This predicate mean that ig ∈ I is
considered at this moment as the Most Probable Goal of the agent agi according
with the reasoning process defined in this section.

2.2 Obfuscation-based decision making process

In Section 1 we presented some strategies to recognize the plans executed by
an agent according with an observed behavior. In Section 2.1 we adapted these
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methods in the context of an onlooker agent. We propose here a decision making
process in order to both achieve the agent’s goals and obfuscate or clarify it as
much as possible from an onlooker’s perspective.

We consider a set A of agents based on a BDI architecture [17]. Each a ∈ A
of the system is described with :

– Ga a set of active goals to achieve;
– Ba a belief base, containing the beliefs of the agent, obtained from both the

perception function of the agent and her own reasoning;
– Pa a plan library containing the plans the agent knows.

A plan is defined as p ::= te : ct← h with te a triggering event (for instance a
belief addition generated by a perception function, of a goal addition generated
by an other plan), ct a context where the plan is feasible described through
a conjunction of atomic formulas, and h is the body of the plan, made of a
sequence of internal actions (belief addition, goal addition) or external actions
(interaction with the environment, interaction with other agents). Through the
description of plans, the designer of the agent defines how the agent will make
decisions, depending on its own beliefs, in order to achieve goals. In this paper,
we consider the shared plan library L (see definition in Section 1) as a shared
knowledge in the system. And as L describes the preconditions of actions, an
agent a may have additional conditions, and its own decision making process
(for instance to decide which subtree is the most interesting in case of OR-nodes
in a plan tree).

In order to integrate the impact of a decision for a potential observer, we
provide here a new process to add in the context of a plan some additional
information and introduce the predicatesmaximizeEntropy(c, t, O, b, hc,t,b) and
minimizeEntropy(c, t, O, b, hc,t,b) with the following arguments :

c is a choice, such as c ∈ A∪G. In a plan tree, such choice might be any child
node of an OR-node ;

t the moment when the choice is supposed to be executed (or at least the first
action, i.e. the leftmost leaf, of the corresponding subtree if they are several
actions);

O the set of options, or possible choices, such as O ⊆ A ∪G and c ∈ O ;
b the past behavior of the agent until t ;

hc,t,b the shannon entropy of the likelihood (see Section 2.1) of all the intendable
goals if the choice c is executed from t and observed in addition with the
behavior b.

The predicate maximizeEntropy(c, t, O, b, hc,t,b) is true iff @c′ ∈ O such as
hc′,t,b > hc,t,b. Respectively, the predicate minimizeEntropy(c, t, O, b, hc,t,b) is
true iff @c′ ∈ O such as hc′,t,b < hc,t,b. For a decision maker, this knowledge
indicates if a choice, according with an existing behavior observation and a set
of alternative options, is the most appropriate to respectively obfuscate or make
transparent the intended goal.
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Using this predicate in the context of a plan allows agents to be informed on
the way to achieve a goal that maximize or minimize entropy. Obfuscation-
based decision makers maximizes entropy for all the intendable goals of I.
Transparency-based decision maker minimizes the entropy to maximize the like-
lihood of their intended goal. Here, obfuscation-based decision making differs
from deception-based agents as it does not tend to behave such that P (ba|ig′) >
P (ba|ig) with ig ∈ I the selected intendable goal the agent actually wants to
achieve and ig′ ∈ I another intendable goal of the library L.

2.3 Proof of concept

To show how this decision process may be implemented in a BDI framework and
observe the impact of this process on the agents’ behavior, this section describes
a proof of concept and a set of experiments using the JaCaMo Framework [2]
to describe the agents internal mechanisms and the shared environment. The
source code of the experiment is available online1.

Overview of the experiment

In JaCaMo, agents are described through the AgentSpeak language [18], a
prolog-like language providing a simple syntax to describe the use and defini-
tions of rules, beliefs, plans and goals of autonomous agents. The default agent
architecture provides the internal mechanisms to perceive the environment, select
intentions in the plan library to achieve active goals and execute these intentions.

Agents
level

Agent

O Shared
knowledge

Environment
level

WorkspaceArtifact

Fig. 2: Overview of the proof of concept

1 http://www.nicolascointe.eu/projects/

http://www.nicolascointe.eu/projects/
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The figure 2 illustrates the multiagent system designed for this experiment,
with a single workspace, including a single artifact focused by every agents.
Focusing the artifact allows agents to perform the set A of actions presented in
Section 1 and notify all the other agents when an action is executed through
the signal mechanism provided by CArtAgO. Agents also share knowledge O,
containing the shared plan library L. For more convenience, O is implemented
in this experiment as a set of shared beliefs, rules and plans.

To symbolize artificial autonomous agents, we use cycling arrows to represent
their internal process, continuously looking for relevant plans to select in order
to achieve their goals.

Representing the shared plan library

To make a decision in case of OR-node or evaluate a behavior, agents need
to manipulate a representation of the plan trees. To do so, O contains a shared
set of beliefs formatted as in the following example presented in implementation
1.1 to represent the plan tree forest.

1 // Name of the leafs (to match with the signals)
2 l e a f ( buySnack , "buySnack" ) .
3
4 //****** First plan tree ******
5 i s In t endab l eGoa l ( haveSnack , "haveSnack" ) .
6
7 i sSonOf ( buySnack , haveSnack , haveSnack ) .
8
9 // Ordered AND -nodes

10 orderConst ra int ( findVendingMachine , buySnack , haveSnack ) .
11
12 // OR-nodes
13 exc lu s i onCons t r a in t ( goToGroundFloor , goToThirdFloor ,

haveSnack ) .

Implementation 1.1: Excerpt from planForestDescriptor.asl

Each leaf of the plan tree forest is described as illustrated in the second line
of the example. The first element is the symbol, used in the reasoning of the
agent, and the second one is a string, to be compared with the signals emitted
by the artifact when actions are executed. With a similar belief illustrated with
the fifth line, root nodes of plan trees, i.e. intendable goals, are described with
both their symbol and the corresponding signal.

All the tree from the root node to the leaves is represented with a set of
beliefs such as isSonOf(A,B,T) illustrated on line seven. This predicate means
that A is a child node of B in the plan tree T.
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Order constraints on AND-nodes are also represented, through a set of spe-
cific beliefs such as orderConstraint(A,B,T) as illustrated on the tenth line,
meaning that the subtree represented by node A should be executed before B in
the plan tree T. In the same way, OR-nodes are represented through an exclusion
constraint between two subtrees of a specific plan tree.

As the set of beliefs previously presented depict the structure of the plan tree
forest, O contains a second file to describe this structure through a set of plans.
As the first file is used for reasoning, the second one is required to use the classic
plan selection process. The excerpt of implementation 1.2 illustrates how nodes
are represented with agentspeak plans.

1 +! haveSnack :
2 dec ide In ( Choice , [ goToThirdFloor , goToGroundFloor ] )
3 <− ! f indVendingMachine ( Choice ) ;
4 ! buySnack ;
5 ! enjoySnackAnywhere ;
6 ! f i n i s h I f IGo tSnack .
7
8 +! findVendingMachine ( goToGroundFloor ) :
9 baseWaitingTime (T)

10 <− .my_name(Name) ;
11 goToGroundFloor (Name) ;
12 . wait (T) ;
13 . p r i n t ("I move to the ground floor" ) .
14
15 +! findVendingMachine ( goToThirdFloor ) :
16 baseWaitingTime (T)
17 <− .my_name(Name) ;
18 goToThirdFloor (Name) ;
19 . wait (T) ;
20 . p r i n t ("I move to the third floor" ) .

Implementation 1.2: Excerpt from planLib.asl

The first plan calls a generic predicate decideIn(C,L) unifying a chosen node
C with an element in a list L representing the different subtrees available from
an OR-node. This predicate is implemented in various ways, depending on the
agents types (see Section 2.3 - Decision process). As each node is implemented
here as a "Jason plan", subgoals are triggered to explore the subtrees (see for
instance lines three to 6 in this example). When a plan representing a leaf node
is executed, the agent executes an action on the artifact and wait a few seconds
to let the others perceive and react to this action.
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Evaluating behaviors

When an action is executed, the artifact broadcast a signal mentioning the
name of the agent performing the action and the action itself. On this signal, an
observer agent updates a belief behavior(A,B) with A the agent’s name and B
the observed behavior as a list of pairs of actions and the corresponding moment
of execution.

1 +! reactToBehavior (Agent ) : behavior (Agent , Behavior )
2 <− ! de ta i lBehav io rExp lanat ion (Agent , Behavior ) .
3
4 +! deta i lBehav io rExp lanat ion (Agent , Behavior ) :
5 l i s tO f In t endab l eGoa l s ( IGs )
6 & time (T)
7 & exp loreExp lanat ions ( Behavior , [ ] , Exp , IGs )
8 & countPlansInExp (Exp , [ ] , PlansOccurrences )
9 & searchMostProbableGoal ( PlansOccurrences ,P,N)

10 & getSpec i f i cCountPlanInExplanat ionSet ( haveCoffeeBreak ,
PlansOccurrences , NofHaveCoffeeBreak )

11 & getSpec i f i cCountPlanInExplanat ionSet ( haveSnack ,
PlansOccurrences , NofHaveSnack )

12 & getSpec i f i cCountPlanInExplanat ionSet ( improveSOTA ,
PlansOccurrences , NofImproveSOTA)

13 <− . l ength (Exp , L) ;
14 j i a . shannonEntropy (H, NofHaveCoffeeBreak , NofHaveSnack ,

NofImproveSOTA) ;
15 . p r i n t ("Agent=" , Agent , " T=" , T, " MPG=" , P, " Entropy

=" , H, "(" , NofHaveCoffeeBreak , "," , NofHaveSnack , ","
, NofImproveSOTA , ")" ) ;

16 . p r i n t ("I can explain the behavior " , Behavior , " of
agent " , Agent , " with the " , L ," possible
explanations : " , Exp) .

Implementation 1.3: Excerpt of onlooker.asl

The onlooker agent analyzes this behavior with the plan presented in Imple-
mentation 1.3. The predicate exploreExplanations(Behavior, [],Exp, IGs)
on the seventh line unifies Exp with an exhaustive list representing the set E of
all the possible explanations (see Section 2.1).

Then the predicate countPlansInExp(Exp,[],PlansOccurrences) unifies
PlansOccurrences with a list containing all the plan trees associated with
their occurrence in the set Exp of all the possible explanations. The predicate
searchMostProbableGoal(PlansOccurrences,P,N) unifies P with the MPG
and the values of both entropy and individual plans probabilities are printed
to produce the post-experimental results analysis shown in the next section.
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Decision process

As mentioned in the description of the plan library, the definition of the
predicate decideIn(C,L) depends on the agent type.

1 dec ide In ( Choice , Options ) :−
2 myName(Name)
3 & myGoal ( Tree )
4 & time (T)
5 & behavior (Name, Behavior )
6 & makeEntropyList (T, Options , Tree , Behavior , EntropyList )
7 & pickTheMostObfuscatingOptionIn ( EntropyList , Choice ,_) .

Implementation 1.4: Excerpt of obfuscator.asl

Random agents simply pick a random choice C in the list of all the possible
choices L.

Obfuscator agents are initialized with an intended goal and use the pred-
icate presented in implementation 1.4. The predicate used on the sixth line,
makeEntropyList(T,Options,Tree,Behavior,EntropyList) unifies the argu-
ment EntropyList with a list of pairs of each option in Options associated with
the estimated entropy if the corresponding subtree is executed. Then, the last
predicate unifies Choice with the option associated with the maximal value in
this list.

Transparency-based agents use a similar process, but pick the option associ-
ated with the minimal entropy value instead of the maximal one.

Results analysis

The simulation is initialized with three random agents, three obfuscator
agents and three transparency-based agents assigned to each of the three in-
tendable goals. An onlooker agent is added in order to observe and evaluate all
the behaviors simultaneously. We aggregate the results of a set of experiments
to let the random agents explore all the possible combinations of choices.

The Figure 3 illustrates the behavior of the agents assigned to the intendable
goal “Have a coffee break” from the onlooker perspective.

As expected, the entropy in the likelihood of intendable goals for random
agents takes several values (represented by the area on the linechart). On the
top of this area, the behavior of obfuscator agents is on the upper limit of the
area, due to their decision process. On the opposite, transparency-based agents
always follow the bottom of this area.
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Fig. 3: Evolution of the entropy in the likelihood of plans

3 Obfuscation, cooperation and explainability

Promoting transparency in a society seems common, moral and intuitive, but
Section 3.1 presents different models of the human tendency to motivate the
avoidance of knowing others’ goals and propose to explore the concept of obfuscation-
based cooperation. Then Section 3.2 highlight the value of explainability in an
organization as a strategic asset.

3.1 Information avoidance and obfuscation-based cooperation

We consider in this paper the case where agents have to collaborate in a shared
environment where they are able to observe, at least partially, the behavior of
the others. Having in mind these observations, agents may willingly avoid to
cooperate with those who do or don’t obfuscate their own goals. This restric-
tion makes sense for instance if agents care about privacy, or want to maximize
uncertainty on the goal of the agents in the system for a strategic purpose. For
instance, this specificity might be relevant in a community of agents to avoid
punishment and to face a tyrannical authority by obfuscating the goals of the
whole community members. This model is a proposition to design artificial au-
tonomous agents and, even if it is inspired by some strong studies in economy
and psychologies, it does not pretend to be a model of any human cognitive
process.

In economy, the concept of Active Information Avoidance (or AIA) [7] is
defined in the case where an agent is aware that the information is available, and
has a free access to the information but refuse to perceive it. The authors mention
various possible motivations such as disappointment or regret aversion, optimism
maintenance, dissonance avoidance (similar to the problem of beliefs consistency
in AI) and strategically driven information avoidance. In a multiagent system,
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where agents have some responsibilities (for instance due to a role in an artificial
organization, or accountability toward a user) but also need to collaborate with
the other agents to achieve their goals, it might be preferable and strategically
relevant to ask them not to reveal their goals.

The model of Rational ignorance [15] proposes a way to represent how a
duty-oriented (due to moral responsibility) homo œconomicus may prefer to
ignore information if it tends to decrease their self-image (a way to evaluate how
satisfying their behavior is regarding their duties).

If avoiding an information about the unethical behavior of a collaborator
may be a way for a human being to avoid cognitive dissonance [15] or guilt, it is
not a solution to avoid social consequences such as being considered culpable of
negligence or collusion. To this end we propose to allow an obfuscator agent to
collaborate with the others only if they obfuscate their goals enough, no matter
how acceptable or not these goals are.

A classic mechanism used in the literature to enable such conditions for a
cooperation is the introduction of trust, defined as “a belief in someone else’s
actions acquired by direct experiences”[14]. An obfuscation-based trust is then a
belief in the ability and will of another agent to obfuscate her goals. Such belief
may be a condition to include an agent in a community of obfuscation-based
decision makers.

3.2 Explanation as a strategic asset for an organization

Let us imagine an application where agents are allowed to cooperate, able to
hamper the success of the others’ plans, and have a motivation to do so (for in-
stance in a cooperative zero-sum game). If the target is engaged in a cooperation,
a plan failure may have an impact on the coalition’s efficiency. In this case, to
hide the goals and selected plans to the opponents seems a major concern. As a
counterpart, being able to explain your goals and plans to the coalition might be
a requirement to both prevent betrayals from malicious agents and coordinate
actions (for instance : resources sharing, avoid deadlocks and so on). To verify
the likelihood of a declared explanation and build a trust-based relationship,
agents may observe the other members of the coalition and verify that the given
explanation is in the set of the possible explanations of the observed behavior.
The design of such framework seems an interesting next step in our research.

If the agent is in interaction and collaborate with a human being, the ob-
fuscation mechanism suggested here may lead to a disturbing, unexpected and
counter-intuitive user experience. As the legibility of the decision is considered as
a welfare for human-autonomous agents interactions [11], it seems necessary to
explain the plan and the reasons of its selection to the user. It might be relevant
also to alert the user, and eventually stop the execution of the planned actions,
if the agent is no longer able to obfuscate her goals. This feature might be espe-
cially interesting and legitimate if the purpose of obfuscation in such system is
to ensure the protection of the user’s privacy.



How to be transparent only with a restricted set of trusted agents 15

4 Conclusion and Further Work

We have presented a mechanism to embed a classic plan recognition technique
into a BDI agent, not only to evaluate the most probable goal of the others, but
also to anticipate their evaluation of the decision maker’s behavior and ensure
that a decision minimizes or maximizes the given information to the others. The
formal model has been defined and illustrated with a very simple example and an
operational proof of concept. Results have been interpreted and confirmed the
expectations. In the last section, we exposed a set of propositions and questions
to explore the impact of obfuscation-based trust mechanisms or information
sharing in agents communities, and discussed about the need of explanations to
deal with cooperation and maintain a sufficient legibility for a human being user.

Future work will first focus on some extensions, such as a way to deal with
partial observability of the environment, i.e. to associate to each action a prob-
ability to be perceived or not, depending or not on the context of the execution
(for instance, to deal with local visions problems in case of spatial dimension in
the environment, or sensors requirement). An interesting contribution might be
the development of such slightly different strategies, as real-time entropy max-
imization or minimization instead of the long-term one presented in this paper
and leading in more complex simulations to such counter-intuitive results. We
have also willingly let apart in this paper the possibility to execute some actions
of an other plan tree in order to increase the entropy. It might be interesting to
explore this type of strategy.

Another important suggestion is to deal with proofs of intention. For instance
if an agent is observed during the execution of an action which is a leaf in only
one plan tree, an observer should directly infer that the root of this plan tree
is obviously in the set of her active goals. For the agent executing this action,
there is maybe no reasons to obfuscate her behavior anymore if all the observers
perceived this action.

In a higher perspective, we want to explore the involvement of the incorpo-
ration of such mechanisms in the decision process of every, or at least a subset of
the agents. In Section 3 we mentioned several cases where obfuscation seems rele-
vant to model dissonance avoidance and rational ignorance, design obfuscation-
based or transparency-based cooperation, or enforce trust with explainability
within an organization or towards a user. Being aware of (and able to manage)
the information provided to external observers trough the behavior of a set of
agents requires to explore a wide set of questions, both from agents-centered and
organizations-centered perspectives.
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